286
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Mechanistic study of nanoparticles–surfactant foam flow in etched glass micro-models

, , , &
Pages 623-633 | Received 21 May 2017, Accepted 08 Sep 2017, Published online: 20 Oct 2017
 

ABSTRACT

This study was conducted in order to identify the pore-level mechanisms controlling the nanoparticles–surfactant foams flow process and residual oil mobilization in etched glass micro-models. The dominant mechanism of foam propagation and residual oil mobilization in water-wet system was identified as lamellae division and emulsification of oil, respectively. There was inter-bubble trapping of oil and water, lamellae detaching and collapsing of SDS-foam in the presence of oil in water-wet system and in oil-wet system. The dominant mechanisms of nanoparticles–surfactant foam flow and residual oil mobilization in oil-wet system were the generation of pore spanning continuous gas foam. The identified mechanisms were independent of pore geometry. The SiO2-SDS and Al2O3-SDS foams propagate successfully in water-wet and oil-wet systems; foam coalescence was prevented during film stretching due to the adsorption and accumulation of the nanoparticles at the gas–liquid interface of the foam, which increased the films’ interfacial viscoelasticity.

GRAPHICAL ABSTRACT

Additional information

Funding

The authors would like to thank the Ministry of Higher Education (MOHE), Malaysia, and Universiti Teknologi Malaysia for supporting this research through research management grant Vot no.Q.J130000.2542.08H61.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.