155
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effect of counter-ions on the solution conformation and adsorption behaviors of comb-like polycarboxylates on calcium carbonate

, , , &
Pages 1804-1812 | Received 22 Aug 2018, Accepted 20 Oct 2018, Published online: 25 Apr 2019
 

Abstract

Three kinds of polycarboxylate ether (PCE) polymers with the same length of side chains but different backbone length were synthesized by aqueous free radical polymerization. Adding counter-ions (i.e., Na+, Ca2+) to dilute PCE solutions was found to induce a more complicated conformational change, since the screening of the electrostatic intramolecular repulsion and the different complexation behaviors of Ca2+ with carboxylic groups. Further characterization on the adsorption indicated that the differences of the adsorption ability resulted from the difference in the solution conformation of PCE molecule. PCE of a medium backbone length studied herein possesses a more extended polymer backbone due to the intermolecular steric hindrance, which result in more carboxylic groups could be accessible for adsorption. Obviously, the solution conformation of PCE strongly impacts the accessible carboxylic group contribution to adsorption. In this way it may provide a new insight to design the polymer structures of PCE with superior adsorption ability.

GRAPHICAL ABSTRACT

Acknowledgments

This project was supported by the National Key R&D Program of China (2017YFB0310002).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.