105
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Novel Zinc ferrite composite with starch and carboxy methyl starch from biowaste precursor for the removal of Ni (II) ion from aqueous solutions

, , , &
Pages 1574-1584 | Received 28 Mar 2023, Accepted 01 Jun 2023, Published online: 19 Jun 2023
 

Abstract

In the present work, Zinc ferrite composites with Mango starch (MS) and carboxymethyl mango starch (CMMS) were synthesized for the removal of Ni (II) ions from aqueous solutions. Composites prepared were characterized by Fourier Transform Infrared (FTIR) Spectroscopy, X-Ray Diffraction (XRD) analysis, pH of point zero charge (pHzpc), Scanning Electron Microscopy (SEM), and BET. Batch adsorption technique was used to study effect of various parameters such as pH, adsorbent dose, contact time, concentration, and temperature for removal of Ni (II) ions from aqueous solutions. The optimum time, pH, adsorbent dose and temperature required for ZFN@ MS and ZFN@ CMMS in this study was 110 min., 7 & 8, 0.1 g and 308 K, respectively. Out of various adsorption isotherms, Freundlich isotherm model fitted best with adsorption data. Maximum adsorption capacity for removal of Ni (II) were found to be 65.3 and 208.3 mg/g, respectively by using Zinc ferrite@ MS and Zinc ferrite@ CMMS adsorbents. Lagergren Pseudo second order model best fitted with results which indicated that the process of adsorption was chemical in nature. The value of adsorption energy for ZFN@ MS was 50 kJ/mol and for ZFN@ CMMS, it was 31.62 kJ/mol. Thermodynamic study revealed that process was endothermic and non-spontaneous in nature. Regeneration studies were conducted for five cycles where Zinc ferrite@ MS showed 71% regeneration efficiency and Zinc ferrite@ CMMS showed 78% regeneration efficiency for nickel ion removal from aqueous solution.

Graphical Abstract

Acknowledgments

The authors are highly thankful to Central Instrumentation Facility, Lovely Professional University, Phagwara (PUNJAB) for the carrying out of different analysis like, XRD, FTIR, SEM, and providing good infrastructure as well as chemicals for research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.