203
Views
3
CrossRef citations to date
0
Altmetric
Articles

A special complementarity function revisited

, , &
Pages 65-79 | Received 10 Dec 2017, Accepted 23 Apr 2018, Published online: 09 May 2018
 

ABSTRACT

Recently, a local framework of Newton-type methods for constrained systems of equations has been developed. Applied to the solution of Karush–Kuhn–Tucker (KKT) systems, the framework enables local quadratic convergence under conditions that allow nonisolated and degenerate KKT points. This result is based on a reformulation of the KKT conditions as a constrained piecewise smooth system of equations. It is an open question whether a comparable result can be achieved for other (not piecewise smooth) reformulations. It will be shown that this is possible if the KKT system is reformulated by means of the Fischer–Burmeister complementarity function under conditions that allow degenerate KKT points and nonisolated Lagrange multipliers. To this end, novel constrained Levenberg–Marquardt subproblems are introduced. They allow significantly longer steps for updating the multipliers. Based on this, a convergence rate of at least 1.5 is shown.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was supported by the DFG (Deutsche Forschungsgemeinschaft) [grant number 290762516]. The first author’s work was also supported by CNPq [grant number 211914/2013-4].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 630.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.