96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cessation time approach incorporating parametric and non-parametric machine-learning algorithms for recovery test data

&
Pages 1578-1590 | Received 19 Aug 2022, Accepted 30 May 2023, Published online: 13 Jul 2023
 

ABSTRACT

In this study we propose a new method called the cessation time approach (CTA) for interpreting recovery tests in confined aquifers, which is based on the Theis solution. The CTA method involves selecting a residual drawdown measurement from the recovery phase and linking it to its dimensionless counterpart through simple algebraic steps. This approach is then incorporated with a regression model to estimate aquifer parameters. The performance of several parametric polynomial and non-parametric machine learning regression models was investigated using various datasets. Results show that CTA with third-order multivariable polynomials produced highly accurate parameter estimates with a normalized root mean squared error (NRMSE) within 0.5% for a field dataset. Among the machine learning algorithms tested, the radial basis function and Gaussian process regression achieved the highest accuracy with NRMSEs of 0.6%. We conclude that CTA can be a viable interpretation tool for recovery tests due to its accuracy and simplicity.

Editor S. Archfield; Associate Editor M. Bianchi

Editor S. Archfield; Associate Editor M. Bianchi

Disclosure statement

No potential conflict of interest was reported by the authors.

Data transparency

All data used in this research can be provided on request.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 147.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.