455
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The effects of enhanced hands-on experimentation on correcting student misconceptions about work and energy in engineering mechanics

ORCID Icon & ORCID Icon
Pages 462-481 | Published online: 30 Jul 2021
 

ABSTRACT

Background

A solid conceptual understanding is essential for students to succeed in all academic disciplines. Student misconceptions are correlated with their poor academic performance and high attrition rates. It is especially important to correct student misconceptions in science-based undergraduate engineering mechanics courses that cover numerous fundamental concepts.

Purpose

This paper aims to conduct a research study on the effects of an instructional intervention called enhanced hands-on experimentation on identifying and correcting student misconceptions about work and energy in a second-year undergraduate engineering mechanics course. As a comparison, the effects of traditional textbook instruction were also investigated.

Sample

The present study is qualitative research involving the transcriptions and coding of qualitative verbal data collected through a think-aloud approach. To offer deep insights into the effects of enhanced hands-on experimentation and traditional textbook instruction on each individual student participant, 12 undergraduate students were recruited to participate in the present study. This sample size is typical in qualitative research.

Design and Methods

The student participants were assigned into an enhanced hands-on experimentation group and a traditional textbook instruction group. Data was collected using a think-aloud approach while student participants took a pre-test and a post-test before and after the enhanced hands-on experimentation or traditional textbook instruction intervention. Qualitative verbal data collected through think-aloud were quantitatively analyzed to compare the effectiveness of the two types of interventions on correcting student misconceptions about work and energy in engineering mechanics.

Results

Compared to traditional textbook instruction, enhanced hands-on experimentation is significantly more effective in correcting student misconceptions about work and energy. As the consequence of enhanced hands-on experimentation, student participants achieved a group-average normalized learning gain of 55.8%, and the overall reduction rate of students’ misconception instances was 47.9%.

Conclusions

The enhanced hands-on experimentation can be employed as an effective supplemental tool to help correct student misconceptions about work and energy in engineering mechanics.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

ISS Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,007.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.