1,212
Views
20
CrossRef citations to date
0
Altmetric
Papers

The effect of bilateral asymmetry of muscle strength on the height of a squat jump: A computer simulation study

, , &
Pages 867-877 | Accepted 01 Mar 2011, Published online: 18 Apr 2011
 

Abstract

The aim of this study was to examine the effect of bilateral asymmetry of muscle strength on maximal height of the squat jump. A computer simulation technique was used to develop two kinds of 3D human lower limb musculoskeletal model (model-symmetry and model-asymmetry). The total muscle strength of the two models was set to be identical. Bilateral muscle strength was equal in the model-symmetry simulation, while the model-asymmetry simulation was performed with a 10% bilateral strength asymmetry. A forward dynamics approach was used to simulate squat jumps. The squat jumps were successfully generated, producing jump heights of 0.389 m for model-symmetry and 0.387 m for model-asymmetry. The small difference in height (0.5%) indicated that the effect of the 10% bilateral asymmetry of muscle strength on jump height is negligible. With model-asymmetry, the strong leg compensated for the muscle strength deficit of the weak leg. Importantly, the mono-articular and large extensor muscles of the hip and knee joint of the strong leg, including the gluteus maximus, adductor magnus, and vasti, compensated for the muscle strength deficit of the weak leg.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 461.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.