958
Views
8
CrossRef citations to date
0
Altmetric
Biomechanics

Influence of shod/unshod condition and running speed on foot-strike patterns, inversion/eversion, and vertical foot rotation in endurance runners

, , &
Pages 2035-2042 | Accepted 02 Mar 2015, Published online: 27 Mar 2015
 

Abstract

The aim of this study was to determine the influence of barefoot running on foot-strike patterns, eversion–inversion, running speed and vertical foot rotation in endurance runners. Eighty healthy recreational runners (age = 34.11 ± 12.95 years old, body mass index = 22.56 ± 2.65 kg · m2) performed trials in shod/unshod running conditions on a treadmill at comfortable and competitive self-selected speeds. Data were collected by systematic observation of lateral and back recordings at 240 Hz. McNemar’s test indicated significant differences between shod/unshod conditions and foot strike at comfortable and competitive speeds (< 0.001). Speed was related to vertical foot rotation type for shod (< 0.01) and unshod conditions (< 0.05). Significant differences were found between shod/unshod conditions in foot rotation at comfortable running speeds (< 0.001) and competitive running speeds (< 0.01). No significant difference was found in inversion or eversion (≥ 0.05). In conclusion, the results suggest that running kinematics, in terms of foot-strike patterns and vertical foot rotation, differ between shod/unshod conditions, while the inversion or eversion degree remains unchanged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 461.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.