637
Views
2
CrossRef citations to date
0
Altmetric
Physiology and Nutrition

The non-linear relationship between sum of 7 skinfolds and fat and lean mass in elite swimmers

ORCID Icon, ORCID Icon, , , &
Pages 2307-2313 | Accepted 29 May 2020, Published online: 19 Jun 2020
 

ABSTRACT

Body composition can substantially impact elite swimming performance. In practice, changes in fat and lean mass of elite swimmers are estimated using body mass, sum of seven skinfolds (∑7) and lean mass index (LMI). However, LMI may be insufficiently accurate to detect small changes in body composition which could meaningfully impact swimming performance. This study developed equations which estimate dual-energy x-ray absorptiometry (DXA)-derived lean and fat mass using body mass and ∑7 data. Elite Australian swimmers (n = 44; 18 male, 26 female) completed a DXA scan and standardised body mass and ∑7 measurements. Equations to estimate DXA-derived lean and fat mass based on body mass, ∑7 and sex were developed. The relationships between ∑7, body mass and DXA-derived lean and fat mass were non-linear. Fat mass (Adjusted R2 = 0.91; standard error = 1.0 kg) and lean mass (Adjusted R2 = 0.99; standard error = 1.0 kg) equations were considered sufficiently accurate. Lean mass estimates outperformed the LMI in identifying the correct direction of change in lean mass (82% correct; LMI 71%). Using the accurate estimations produced by these equations will enhance the prescription and evaluation of programmes to optimise the body composition and subsequent performance in swimmers.

Acknowledgments

The authors would like to acknowledge the swimmers and coaches at the Queensland Academy of Sport for being willing to be involved in this investigation. We would also like to thank the SPIKE team at QAS for their support of the project.

Disclosure statement

The authors report no conflict of interest.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 461.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.