749
Views
3
CrossRef citations to date
0
Altmetric
Sports Medicine and Biomechanics

Ground reaction forces during sprint hurdles

ORCID Icon, , &
Pages 2706-2715 | Accepted 07 Jul 2021, Published online: 27 Jul 2021
 

ABSTRACT

This study aimed to demonstrate ground reaction forces (GRFs) during sprint hurdles and to clarify determinants of faster sprint hurdlers. Eleven male hurdlers performed 60-m sprint hurdle trials, clearing five hurdles, during which step-to-step spatiotemporal and GRF variables were measured. The preparatory step showed smaller braking and effective vertical impulses compared with the other steps, possibly lowering the centre of mass (CM). The greater braking and smaller propulsive impulses, which result in negative net anteroposterior impulse, were characteristics of the hurdle step. This deceleration may be due to producing a large elevation of CM for clearing the hurdle through large vertical GRF production. Compared with the other steps, the second greatest braking mean force and relatively small propulsive impulse, and large propulsive impulse through long propulsive time were shown at the landing and recovery steps, respectively. The results showed better sprint hurdle performance could be achieved by minimizing braking impulse through suppressing braking time, and increasing propulsive impulse through maximizing propulsive mean force at the hurdle step; suppressing braking and propulsive times at the landing step; minimizing propulsive time, increasing effective vertical mean force, and maximizing anteroposterior net mean force through increasing propulsive mean force at the recovery step.

Acknowledgments

This research was conducted at the National Institute of Fitness and Sports in Kanoya.

We thank Dr. Sam Gleadhill (National Institute of Fitness and Sports in Kanoya, Japan) for his English proofreading.

Disclosure statement

The authors do not have any conflict of interest to declare.

Additional information

Funding

This study was partially supported by Japan Society for the Promotion of Science [17K13164].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 461.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.