710
Views
3
CrossRef citations to date
0
Altmetric
Sports Medicine and Biomechanics

Kinetic time-curves can classify individuals in distinct levels of drop jump performance

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 2143-2152 | Accepted 23 Oct 2022, Published online: 29 Oct 2022
 

ABSTRACT

This study examined whether analysing kinetic features of drop jumps (DJ) as one-dimensional biomechanical curves can reveal specific patterns that are consistent and can cluster DJ performance. Hierarchical clustering analysis on DJ from 40 cm data performed by 128 physically active male participants (23.0 ± 4.5 yrs, 1.84 ± 0.07 m, 79.1 ± 10.8 kg) was performed on the derived time-normalised force, power and vertical stiffness curves to unmask the underlying patterns and to explore the dissimilarities identified from the subgroup (cluster) analysis. Results revealed poor, average and top DJ performers. Top performers exhibited larger peak force, power and vertical stiffness compared to the other two groups, and the poor performers had lower values compared to the average performers (p < .05). The time curves of force, power and vertical stiffness exhibited between cluster dissimilarities from ~25% to ~70%, and ~20% to 40% plus ~55% to 70% from the beginning of the ground contact, respectively. The force and power time-curves distinguished DJ ability similarly since they shared 69% of the cases in the top performers’ cluster. The content of cases (membership) for vertical stiffness was different from the membership for the force and power time-curve clusters. In conclusion, stiffness should be considered during plyometric training, but does not distinctly define DJ performance.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors reported that there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 461.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.