0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improving the estimation of countermovement jump height from force plate recordings by considering the interaction between multiple procedural steps: An optimisation approach

ORCID Icon & ORCID Icon
Received 19 Sep 2023, Accepted 10 Jul 2024, Published online: 18 Jul 2024
 

ABSTRACT

Force plates are used as standalone measurement systems in research and practice to evaluate metrics such as jump height. Calculating jump height involves multiple procedural steps, but previous investigations aiming to improve calculation procedures have only considered the influence of a single procedural step in isolation. The purpose of this study was to investigate if considering the interacting influence of multiple procedural steps in conjunction would impact the accuracy of jump height calculated from force plate recordings. An optimisation procedure was used to determine the combination of filter type, filter order, filter cut-off, integration start point and instant of take-off, that would minimize the root mean squared difference between force plate calculated jump height and a kinematic criterion. The best filter approach was a fifth order Butterworth filter with a 6 Hz cut-off frequency or a third order Chebyshev filter with a 5 Hz cut-off frequency. The best starting point for integration was approximately 0.25 s prior to the onset of the jump and the instant of take-off was best identified by finding the first instant that the force-time signal decreased by the magnitude of system weight. The presented optimisation technique provides an improved quantitative approach to develop standard procedures.

Acknowledgments

The authors would like to acknowledge the support provided by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Ontario Graduate Scholarship (OGS). Jack P. Callaghan holds the Canada Research Chair in Spine Biomechanics and Injury Prevention.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 461.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.