130
Views
1
CrossRef citations to date
0
Altmetric
Research Article

LINC00707 inhibits myocardial fibrosis and immune disorder in rheumatic heart disease by regulating miR-145-5p/S1PR1

, &
Received 22 Feb 2023, Accepted 13 Apr 2023, Published online: 21 Apr 2023
 

ABSTRACT

LINC00707 is a lncRNA that can regulate a variety of diseases. This study mainly investigated that the expression of LINC00707 in rheumatic heart disease (RHD) and LINC00707 regulates S1PR1 by targeting miR-145-5p to inhibit myocardial fibrosis and immune disorder in RHD. A rat model of RHD induced by inactivated group A β-hemolytic streptococcus (GSA) was established. Sixty female Lewis rats (8 weeks of age) were randomly divided into six groups, including control (Con), RHD, RHD+NC, RHD+LINC00707, RHD+miR-145-5p and RHD+LINC00707+miR-145-5p. The mRNA expression was detected by Quantitative Real-time polymerase chain reaction (qRT-PCR). Protein expression of S1PR1 was detected by western blot. The levels of myocardial damage markers (CK-MB, cTnl) and inflammatory immune markers (IL-6, IL-17 and IL-21) were measured by enzyme linked immunosorbent assay (ELISA). The Collagen III/I(COLIII/I) ratio, mRNA expression of COLIIIα1 and FSP1 of rat heart valve tissue in the RHD group was observably higher by comparison with the CON group. The expression of LINC00707 was observably lower in the RHD group. LINC00707 inhibited myocardial fibrosis and immune disorder in RHD. MiR-145-5p was the target gene of LINC00707 via Targetscan prediction. Luciferase reporter experiment confirmed that miR-145-5p was directly regulated by LINC00707. The expression of miR-145-5p in the RHD group was observably higher by comparison with the CON group and LINC00707 observably decreased the expression of miR-145-5p. miR-145-5p mimic reversed the inhibiting effect of LINC00707 on myocardial fibrosis and immune disorder. Furthermore, S1PR1 was confirmed to be downstream gene of miR-145-5p and low expressed in the RHD model. LINC00707 could inhibit myocardial fibrosis and immune disorder in RHD by regulating miR-145-5p/S1PR1.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors reported there is no funding associated with the work featured in this article.

Notes on contributors

Wen Zhao

Wen Zhao, engaged in thoracic and cardiovascular surgery, mainly focuses on the pathophysiological mechanism of cardiorespiratory system and vascular diseases.

Guoxiong Huang

Guoxiong Huang, engaged in thoracic and cardiovascular surgery, mainly focuses on the pathophysiological mechanism of cardiorespiratory system and vascular diseases.

Jiemei Ye

Jiemei Ye, engaged in clinical basic medical research, mainly focusing on the pathophysiological mechanisms of cardiovascular and cerebrovascular diseases.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 331.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.