153
Views
44
CrossRef citations to date
0
Altmetric
Original Articles

Apyap1 affects aflatoxin biosynthesis during Aspergillus parasiticus growth in maize seeds

, , , , &
Pages 1070-1075 | Received 17 Apr 2007, Accepted 04 Jul 2007, Published online: 24 Sep 2007
 

Abstract

It is demonstrated that, in fungal cells grown in synthetic media, the Apyap1 gene is implicated in the modulation of aflatoxin biosynthesis following the perturbation of redox balance. This study suggests that an association between oxidative stress and aflatoxin biosynthesis also occurs in maize seeds. We used ΔApyap1, a strain in which the gene Apyap1 was disrupted, to verify whether this oxidative stress-related transcription factor, by affecting cell redox balance, can have a role in the modulation of aflatoxin synthesis. The amount of hydroperoxides (ROOH) produced by wild type (WT) and ΔApyap1, both grown in potato dextrose broth, was assayed in the filtrate. In maize seeds (30 g), inoculated with WT and ΔApyap1conidia and incubated at 30°C for 15 days, lipoxygenase activity (LOX), lipoperoxides (LOOH) production, fungal growth and aflatoxin biosynthesis was analysed. It was observed that ΔApyap1 released more hydroperoxides in the culture media and more aflatoxins in seeds, possibly through stronger stimulation of LOX, which, in turn led to greater LOOH production in the seeds. On the basis of the results, a hypothesis regarding strategies to control aflatoxin synthesis is formulated.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.