504
Views
63
CrossRef citations to date
0
Altmetric
Research Article

Characteristics of vitamin C encapsulated tripolyphosphate-chitosan microspheres as affected by chitosan molecular weight

, &
Pages 79-90 | Received 17 Jan 2005, Accepted 10 May 2005, Published online: 08 Oct 2008
 

Abstract

In this paper, the effect of chitosan molecular weight on the characteristics (size, encapsulation efficiency, zeta potential, surface morphology and release rate) of vitamin C encapsulated tripolyphosphate cross-linked chitosan (TPP-chitosan) microspheres. The molecular weight of chitosan had a noticeable influence on the size, encapsulation efficiency, zeta potential, surface morphology and controlled release behaviour of the vitamin C encapsulated TPP-chitosan microspheres. The mean particle size and encapsulation efficiencies of TPP-chitosan microspheres were 3.1, 4.9 and 6.7 µm and 67.25, 60.43 and 52.74% for the microspheres prepared using low, medium and high molecular weight chitosan, respectively. All the TPP-chitosan microspheres (low, medium and high molecular weight) had positive charge on their surface. The zeta potential of the TPP-chitosan microspheres prepared using low, medium and high molecular weight chitosan was 41.25, 40.84 and 39.13 mV, respectively. The particle sizes of TPP-chitosan microspheres increased with increases in chitosan molecular weight. Molecular weight of chitosan did not affect significantly the % yield of TPP-chitosan microspheres prepared by spray-drying. The influence of chitosan molecular weight on the surface morphology of vitamin C encapsulated TPP-chitosan microspheres was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was observed that, as the molecular weight of chitosan increases, TPP-chitosan microspheres with uniform spherical shape could be obtained. The physical state of vitamin C (amorphous or crystalline) in TPP-chitosan matrix was studied by X-ray diffraction (XRD) and it was found that vitamin C is dispersed at the molecular level (amorphous) in the TPP-chitosan matrix. Release rate of the vitamin C from TPP-chitosan microspheres was significantly affected by the chitosan molecular weight. The release rate decreased with increase in the chitosan molecular weight. The release of vitamin C from TPP-chitosan microspheres followed Fick's law of diffusion.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.