190
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Influence of viscosity and uronic acid composition of alginates on the properties of alginate films and microspheres produced by emulsification

, , &
Pages 912-927 | Received 22 Feb 2006, Accepted 10 Aug 2006, Published online: 08 Oct 2008
 

Abstract

This study investigated the influence of viscosity and uronic acid composition of alginates on the properties of alginate films and microspheres produced by emulsification. Tensile properties of films were determined while the yield, size, drug contents and release characteristics of the microspheres were examined. Tensile properties of calcium alginate matrix were significantly affected by the orientation and arrangement of the polymer chains. High viscosity alginates gave rise to higher yields and bigger microspheres. Generally, microspheres with high drug content and slower rate of drug release had high Ca2+ contents and were produced from alginates of higher viscosity. Within an alginate microsphere batch, small sized microsphere fractions had higher drug contents but showed faster drug release rates. Microspheres having a defined size range revealed great dependence of encapsulation efficiency and drug release rates on viscosity and extent of Ca2+-alginate interaction. Viscosity appeared to exert a predominant influence on the microsphere properties.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.