119
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Polyvinylamine-based capsules: A mechanistic study of the formation using alginate and cellulose sulphate

&
Pages 323-336 | Received 18 Apr 2006, Accepted 20 Jul 2006, Published online: 08 Oct 2008
 

Abstract

Capsules based on sodium alginate (SA) and sodium cellulose sulphate (SCS), have been prepared using polyvinylamines (PVAm) of varying intrinsic viscosities. The resulting capsules are relatively dense in nature, revealing a bursting force which is four times that observed for the classical SA/SCS/polymethylene-co-guanidine chemistry. Molar mass cutoffs were typically in the 10–70 kDa range. A mechanistic study was carried out where the reaction time, ionic strength and pH of the reaction mixture, as well as the stoichiometry of the polyanion blend and the PVAm molar mass were varied. It is postulated that both the SA-PVAm and the SCS-PVAm binary interactions contribute to the mechanical properties and the permeability of the resulting capsules. The polyvinylamine-based chemistry offers interesting alternatives to the PMCG system in that it provides a means to produce capsules at low, or zero, ionic strengths. Subtle changes in the pH, or the SA:SCS ratio, can also be used to tune the bursting force quite sensitively. The most appropriate capsules, for transplantation, would likely be formed at polyanion levels of 1.2 wt% with a PVAm molar mass below 17 kDa.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.