486
Views
67
CrossRef citations to date
0
Altmetric
Research Article

Comparative study of poly (lactic-co-glycolic acid)-poly ethyleneimine-plasmid DNA microparticles prepared using double emulsion methods

, &
Pages 1-12 | Received 18 May 2007, Accepted 03 Sep 2007, Published online: 08 Oct 2008
 

Abstract

Controlled release of plasmid DNA (pDNA) from biodegradable poly lactic-co-glycolic acid (PLGA) microparticles has the potential to enhance transgene expression. However, barriers to this approach include limited encapsulation efficiency, pDNA damage during fabrication and confinement of the microparticles inside phagolysosomal compartments. Combining PLGA with poly ethyleneimine (PEI) can improve protection of pDNA during fabrication, increase encapsulation efficiencies and impart the PLGA microparticles with the capacity to escape the phagolysosomal compartments. This study compares three promising formulation methods for preparing PLGA PEI pDNA microparticles and evaluates for buffering capacity, cellular uptake, transfection efficiency and toxicity. In the first method, PLGA PEI pDNA microparticles are prepared by entrapping pDNA in blended PLGA/PEI using the double emulsion water-in-oil-in-water solvent evaporation technique (PA). In a second approach, PEI-pDNA polyplexes are prepared and then entrapped in PLGA microparticles using a double emulsion solvent evaporation method (PB). Microparticles prepared using formulation methods PA and PB are then compared against PLGA microparticles with PEI conjugated to the surface using carbodiimide chemistry (PC); 0.5% PVA is identified as the optimum concentration of surfactant for generating the strongest transfection efficiencies. N:P ratios of 5 and 10 are selected for preparation of each group. Gel electrophoresis demonstrates that all PLGA microparticle formulations have strong pDNA binding capacity. An MTT assay shows that in vitro cytotoxicity of PLGA PEI microparticles is significantly lower than PEI alone. PLGA PEI pDNA microparticles mediate higher cellular uptake efficiency and consequently higher transgene expression than unmodified PLGA microparticles in COS7 and HEK293 cells. Preparing PEI-pDNA polyplexes prior to entrapment in PLGA microparticles (PB) results in the highest pDNA loading. This is 2.5-fold higher than pDNA loading in unmodified PLGA microparticles. PLGA PEI pDNA microparticles prepared using method PB generates the strongest transfection efficiencies, which are 500-fold higher than unmodified PLGA pDNA microparticles in HEK293 cells and 1800-fold higher in COS-7 cells. The highest transfection efficiencies generated from microparticles prepared using method PB is achieved using an N:P ratio of 5.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.