388
Views
20
CrossRef citations to date
0
Altmetric
Original

Formulation and characterization of the microencapsulated entomopathogenic fungus Metarhizium anisopliae MA126

&
Pages 377-384 | Received 29 Nov 2007, Accepted 24 Jul 2008, Published online: 20 Oct 2008
 

Abstract

Bioinsecticides are expected to be used for controlling major species of aphids. The present study explored a liquid phase coating technique for the formulation of microencapsulated conidia of the entomopathogenic fungus Metarhizium anisopliae MA126. Various parameters for microencapsulation were investigated. The biopolymers sodium alginate, hydroxypropyl methyl cellulose (HPMC) and chitosan were tested as coating materials. Calcium chloride was used as the cross-linking agent for converting soluble sodium alginate into an insoluble form. To improve the efficiency of microencapsulation, the additives of HPMC, dextrin, chitosan or HPMC/chitosan in various ratios (1 : 1, 1 : 3 and 3 : 1) were used as the coating materials. The particle size of a bare microcapsule was less than 30 µm. Larger size microcapsules were produced using vortex method by comparison with that using homogenization method. The latter method, however, was easy to scale up. The effect of coating materials on the morphology and encapsulation efficiency of the microcapsules was also studied. The best encapsulation efficiency (78%) was using HPMC as the additive of the coating material. The next was dextrin (70%). By measuring the germination rate, the results showed that the activity was ∼80% of the initial after 6 months of storage at 4°C, while that of the bare conidia was less than 50% stored in identical conditions.

Acknowledgements

We thank the technical assistance of Miss Zu-Yi Chiu and Mr. Ya-Ching Wang. Financial support from National Science Council of Taiwan (Grant No. NSC94-2313-B-276-001-) is gratefully acknowledged.

Declaration of interest: The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.