137
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Robust testing for stationarity of global surface temperature

Pages 1349-1361 | Received 24 Jan 2012, Accepted 11 Mar 2013, Published online: 04 Apr 2013
 

Abstract

Surface temperature is a major indicator of climate change. To test for the presence of an upward trend in surface-temperature (global warming), sophisticated statistical methods are typically used which depend on implausible and/or unverifiable assumptions, in particular on the availability of a very large number of measurements. In this paper, the validity of these methods is challenged. It is argued that the available series are simply not long enough to justify the use of methods which are based on asymptotic arguments, because only a small fraction of the information contained in the data is utilizable to distinguish between a trend and natural variability. Thus, a simple frequency-domain test is proposed for the case when all but a very small number of frequencies may be corrupted by transitory fluctuations. Simulations confirm its robustness against short-term autocorrelation. When applied to a global surface-temperature series, significance can be achieved with far fewer frequencies than required by conventional tests.

2010 Mathematics Subject Classifications :

Acknowledgements

I very much appreciate the referees’ comments, which substantially improved this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 549.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.