191
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Interval estimation for conformance proportions of multiple quality characteristics

, &
Pages 1829-1841 | Received 18 Aug 2014, Accepted 19 Jan 2015, Published online: 13 Feb 2015
 

Abstract

A conformance proportion is an important and useful index to assess industrial quality improvement. Statistical confidence limits for a conformance proportion are usually required not only to perform statistical significance tests, but also to provide useful information for determining practical significance. In this article, we propose approaches for constructing statistical confidence limits for a conformance proportion of multiple quality characteristics. Under the assumption that the variables of interest are distributed with a multivariate normal distribution, we develop an approach based on the concept of a fiducial generalized pivotal quantity (FGPQ). Without any distribution assumption on the variables, we apply some confidence interval construction methods for the conformance proportion by treating it as the probability of a success in a binomial distribution. The performance of the proposed methods is evaluated through detailed simulation studies. The results reveal that the simulated coverage probability (cp) for the FGPQ-based method is generally larger than the claimed value. On the other hand, one of the binomial distribution-based methods, that is, the standard method suggested in classical textbooks, appears to have smaller simulated cps than the nominal level. Two alternatives to the standard method are found to maintain their simulated cps sufficiently close to the claimed level, and hence their performances are judged to be satisfactory. In addition, three examples are given to illustrate the application of the proposed methods.

Acknowledgments

The authors thank the editor and two referees for their constructive comments and suggestions that resulted in a much improved article.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research is partially supported by the National Science Council of ROC under grant [NSC 102-2118-M-002-004-MY2].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 549.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.