383
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of data analysis procedures for real-time nanoparticle sampling data using classical regression and ARIMA models

, , , , , , , & show all
Pages 685-699 | Received 09 May 2015, Accepted 20 Apr 2016, Published online: 12 May 2016
 

ABSTRACT

Real-time monitoring is necessary for nanoparticle exposure assessment to characterize the exposure profile, but the data produced are autocorrelated. This study was conducted to compare three statistical methods used to analyze data, which constitute autocorrelated time series, and to investigate the effect of averaging time on the reduction of the autocorrelation using field data. First-order autoregressive (AR(1)) and autoregressive-integrated moving average (ARIMA) models are alternative methods that remove autocorrelation. The classical regression method was compared with AR(1) and ARIMA. Three data sets were used. Scanning mobility particle sizer data were used. We compared the results of regression, AR(1), and ARIMA with averaging times of 1, 5, and 10 min. AR(1) and ARIMA models had similar capacities to adjust autocorrelation of real-time data. Because of the non-stationary of real-time monitoring data, the ARIMA was more appropriate. When using the AR(1), transformation into stationary data was necessary. There was no difference with a longer averaging time. This study suggests that the ARIMA model could be used to process real-time monitoring data especially for non-stationary data, and averaging time setting is flexible depending on the data interval required to capture the effects of processes for occupational and environmental nano measurements.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by <Korean Occupational Safety and Health Agency> [2013-OSHRI-597]; <BK21 Plus project> [No.5280-20140100]; <National Institute of Environmental Research of Korea> [2012-Nano R&D].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 549.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.