322
Views
0
CrossRef citations to date
0
Altmetric
Articles

Robust and efficient subsampling algorithms for massive data logistic regression

, ORCID Icon &
Pages 1427-1445 | Received 02 Jul 2021, Accepted 16 Apr 2023, Published online: 26 Apr 2023
 

Abstract

Datasets that are big with regard to their volume, variety and velocity are becoming increasingly common. However, limitations in computer processing can often restrict analysis performed on them. Nonuniform subsampling methods are effective in reducing computational loads for massive data. However, the variance of the estimator of nonuniform subsampling methods becomes large when the subsampling probabilities are highly heterogenous. To this end, we develop two new algorithms to improve the estimation method for massive data logistic regression based on a chosen hard threshold value and combining subsamples, respectively. The basic idea of the hard threshold method is to carefully select a threshold value and then replace subsampling probabilities lower than the threshold value with the chosen value itself. The main idea behind the combining subsamples method is to better exploit information in the data without hitting the computation bottleneck by generating many subsamples and then combining estimates constructed from the subsamples. The combining subsamples method obtains the standard error of the parameter estimator without estimating the sandwich matrix, which provides convenience for statistical inference in massive data, and can significantly improve the estimation efficiency. Asymptotic properties of the resultant estimators are established. Simulations and analysis of real data are conducted to assess and showcase the practical performance of the proposed methods.

Acknowledgments

The authors would like to thank the Editors and Reviewers for their constructive comments and useful insights which led to an improved presentation of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was supported by the National Natural Science Foundation of China [grant number #11471264], and ‘Green Yang Jin Feng’ Outstanding Doctoral Talent Support Program Project of Yangzhou.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 549.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.