321
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Indentation size effect in steels with different carbon contents and microstructures

, ORCID Icon, , &
Pages 338-346 | Received 23 Feb 2022, Accepted 09 Aug 2022, Published online: 05 Sep 2022
 

Abstract

Indentation Size Effect (ISE) in steels having a wide spectrum of carbon (C) concentrations (wt-%) 0.002 (interstitial-free), 0.07 (microalloyed), 0.19 (low carbon), 0.32 (medium carbon), and 0.7 (high carbon), and microstructures were investigated using Vickers micro-hardness tester. A decrease in micro-hardness with increasing load, i.e. ISE, is observed in all the samples except microalloyed steel. The empirical relations, such as the Nix and Gao model, Minimum Resistance model, and Proportional Specimen Resistance (PSR) model, were used to determine the load-independent or true hardness values. Nix and Gao model was adopted to determine the plastically deformed zone (PDZ) size under the indenter and subsequently correlated with ISE in the materials. It is observed that ISE is absent when the PDZ size becomes comparable to or larger than the grain size of the material.

Data availability

The raw/processed data required to reproduce these findings it will be available upon request to corresponding author.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.