429
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication of self-cleaning superhydrophobic silicone rubber insulator through laser texturing

, , &
Pages 308-317 | Received 28 Dec 2019, Accepted 02 Jun 2020, Published online: 21 Jun 2020
 

ABSTRACT

Silicone insulators are gaining its importance in the transmission and distribution of the power system networks. This study proposes a simple and high throughput way of fabrication of superhydrophobic silicone surfaces. The Nd:YAG nanosecond pulse laser was used to engrave six different types of structures on silicone rubber. The water contact angle (CA) and contact angle hysteresis (CAH) were measured using drop shape analyser goniometer. The self-cleaning property of the structured silicone surfaces was tested. Among six types of patterns, the structures formed through 50% scanning overlapped possess high CA (159 ± 1°) with very low CAH (3°) which is desirable for any self-cleaning surface. However, a completely irradiated silicone surface gives the highest CA (163 ± 2°) with very high CAH (61.84°). The proposed work is a vital step towards making a superhydrophobic insulator surface without the use of any coating for high voltage power system applications.

Acknowledgement

Authors appreciate the help of the Central Research Facility available at IIT Delhi for facilitating to use DSA goniometer for contact angle measurement.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.