174
Views
0
CrossRef citations to date
0
Altmetric
Articles

Turning of Al 7075-T6 aerospace alloy under different sustainable metalworking fluid strategies by coated carbide tools

ORCID Icon &
Pages 275-294 | Received 04 Jan 2023, Accepted 08 May 2023, Published online: 20 May 2023
 

ABSTRACT

We primarily need to reduce the consumption of metalworking fluid to ensure sustainable and eco-friendly machining of aerospace alloys. The present study was planned to determine the efficiency of various eco-friendly metalworking fluid strategies for the sustainable turning of aerospace aluminium alloy (Al7075-T6) coated carbide tools under different eco-friendly metalworking fluid strategies namely dry machining, minimum quantity lubrication (MQL), Ranque-Hilsch vortex tube (RHVT), and compressed air. Machining performance was investigated in terms of micro-hardness, tool tip temperature, tool wear, cutting forces, work surface roughness, chip morphology, and energy consumed. Results manifested that MQL and tool coatings can significantly lower tool tip temperature by up to 16%, tool wear by up to 102–106%, average cutting forces by 17–21%, and surface roughness reduced from 11–21% as compared to dry conditions.

Abbreviations: BUE, built-up edge; CVD, chemical vapour deposition; CrN, chromium nitride; DCR, disposed chip ratio; DLC, diamond like carbon; DSPR, disposal scrap part ratio; EDS, energy dispersive X-ray spectroscopy; MF, metalworking fluid; MoS2, molybdenum disulphide; MQL minimum quantity lubrication; PVD, physical vapour deposition; RHVT, Ranque-hilsch vortex tube; RPSR, recycled part scrap ratio; RSPR, remanufacturing scrap part ratio; SEM, scanning electron microscopy; SDSS, super duplex stainless steel; TiAlN, titanium aluminium nitride

Acknowledgements

The author expresses heartfelt gratitude to IKG, Punjab Technical University Kapurthala, Punjab, India for supporting this study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.