526
Views
183
CrossRef citations to date
0
Altmetric
Original Articles

Liquid crystal phases of achiral banana-shaped molecules: a computer simulation study

Pages 483-496 | Published online: 11 Nov 2010
 

Abstract

The phase behaviour of achiral banana-shaped molecules was studied by computer simulation. The banana-shaped molecules were described by model intermolecular interactions based on the Gay-Berne potential. The characteristic molecular structure was considered by joining two calamitic Gay-Berne particles through a bond to form a biaxial molecule of point symmetry group C 2v with a suitable bending angle. The dependence on temperature of systems of N=1024 rigid banana-shaped molecules with bending angle φ =140° has been studied by means of Monte Carlo simulations in the isobaric-isothermal ensemble (NpT). On cooling an isotropic system, two phase transitions characterized by phase transition enthalpy, entropy and relative volume change have been observed. For the first time by computer simulation of a many-particle system of banana-shaped molecules, at low temperature an untilted smectic phase showing a global phase biaxiality and a spontaneous local polarization in the layers, i.e. a local polar arrangement of the steric dipoles, with an antiferroelectric-like superstructure could be proven, a phase structure which recently has been discovered experimentally. Additionally, at intermediate temperature a nematic-like phase has been proved, whereas close to the transition to the smectic phase hints of a spontaneous achiral symmetry breaking have been determined. Here, in the absence of a layered structure a helical superstructure has been formed. All phases have been characterized by visual representations of selected configurations, scalar and pseudoscalar correlation functions, and order parameters.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.