109
Views
15
CrossRef citations to date
0
Altmetric
Miscellany

Investigations on liquid crystalline partially fluorinated alkyl and succinimidyl benzoates

, &
Pages 513-525 | Received 07 Mar 2003, Accepted 21 Aug 2004, Published online: 20 Feb 2007
 

Abstract

The synthesis and mesophase properties of partially fluorinated alkoxy‐substituted benzoic alkyl and succinimidyl (NHS) esters with one, two and three perfluoroalkyl alkoxy chains are reported. The mesophases were studied using differential scanning calorimetry (DSC), polarizing optical microscopy and X‐ray diffraction of non‐oriented samples. The SmA phases of the one‐chain methyl esters are monotropic, while those of the one‐chain NHS esters are enantiotropic. The more wedge‐shaped two‐ and three‐chain alkyl esters do not form mesophases, whereas the succinimidyl analogues exhibit hexagonal columnar phases. Their enhanced mesophase stability is caused by the higher polarity of the succinimidyl ring with respect to the alkyl ester groups. Aggregation of the dipolar succinimidyl groups, together with the microsegregation of the lipophilic and fluorophilic segments of the partially fluorinated alkoxy chains, is assumed to lead to a threefold structured morphology in both the SmA and the Colh phases. This threefold structuring can be regarded as analogous to known morphologies of ABC triblock copolymers.

Acknowledgements

We gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (La 662/7,1;7,2) and of TEMPUS (JEP‐12387‐97).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.