214
Views
25
CrossRef citations to date
0
Altmetric
Invited Articles

The influence of sodium chloride on the self-association and chromonic mesophase formation of Edicol Sunset Yellow

, , &
Pages 711-722 | Received 17 Dec 2009, Accepted 31 Mar 2010, Published online: 06 Jul 2010
 

Abstract

We have investigated the effect of an inorganic electrolyte (sodium chloride) on the aggregation behaviour and liquid crystals of Edicol Sunset Yellow. Edicol self-aggregates in aqueous solution to form single molecule stacks, which then become ordered to form nematic and hexagonal (columnar) mesophases at high concentrations. We have employed changes in the 1H nuclear magnetic resonance (NMR) chemical shifts to monitor the aggregate formation in solution. A single spectrum is observed at all concentrations because the exchange between Edicol monomers in solution and those in stacks is fast on the NMR time scale. The results show that at low Edicol concentrations (<1 wt%) the concentration of aggregates is small, but at high concentrations (20 wt%) the fraction of monomers is tiny. At low Edicol concentrations, low levels of salinity appear to alter aggregate shape and size, resulting in a disaggregation/aggregation effect occurring over four orders of magnitude of added electrolyte. However, little alteration is seen in the fraction of aggregates. At high electrolyte levels, when the Debye length is comparable to the stack lengths (a few nanometres), the fraction of aggregates increases, presumably because of the reduced intra-stack electrostatic repulsion. Importantly, we have also shown that the isodesmic theory of aggregation (equal K) is too simple to describe accurately the aggregation process from the monomer to the pre-nematic phase concentrations. NMR quadrupole splittings indicate that there is no specific Na+ ion binding to the stacks. At the very highest concentrations of Edicol and sodium chloride the aggregates and mesophases are destabilised. The reason for this has yet to be elucidated.

Acknowledgements

We thank EPSRC and (the late) ICI for financial support. In addition, we are grateful to Professor A. Masters, Professor O. Lavrentovich, Dr L. Tortora, Dr O. Lozman, Dr C. Rodríguez-Abreu1, Dr M. Sintyureva and D.G. Edwards for valuable discussions. We also thank Professor M. Wilson and Dr F. Chami who provided details of unpublished structures from molecular simulations.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.