473
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

Hydrogen-bonded supramolecular complexes formed between isophthalic acid and pyridine-based derivatives

, &
Pages 925-934 | Received 23 Jun 2010, Accepted 07 May 2011, Published online: 12 Jul 2011
 

Abstract

Two types of supramolecular liquid crystals were prepared through the formation of double hydrogen-bonded complexes between isophthalic acid (A) and two different groups of pyridine-based derivatives ( I n and I a-e ). The first group of the base, I n (molecular formula 4-CnH2n+1OC6H4COOC6H4-N=N-C5H4N) homologues differ from each other by the number of carbon atoms (n) in the alkoxy chain, which varies between 8, 10, 12 and 14 carbons. The second group of the pyridine-based derivatives, I a-e (molecular formula 4-X-C6H4COOC6H4-N=N-C5H4N) analogues differ from each other by the terminal polar substituent, X, that changes between OCH3, CH3, H, NO2 and Br groups. In this manner two different groups of complexes are formed, one of them is A : 2I n, (Group A ), and the other is A : 2I a-e , (Group B ). All complexes were investigated for their mesophase behaviour by differential scanning calorimetry and polarised light microscopy. The formation of 1:2 hydrogen-bonded complexes was confirmed by FTIR spectroscopy and binary phase diagrams. Most complexes A and B show nematic and/or SmA phases. X-ray diffraction of the SmA phase of a representative complex of type A indicates a layer distance corresponding to only half of the length of the H-bonded complexes which is interpreted by a phase structure where these complexes adopt a U-shape which intercalate and form non-polar SmA phases.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.