440
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Viscosity coefficients of nematic liquid crystals: II. Measurements of some nematic liquid crystals

&
Pages 1183-1191 | Received 06 Jan 2011, Accepted 28 Jun 2011, Published online: 09 Sep 2011
 

Abstract

Oscillating plate and rotational viscosity measurements are reported for a series of liquid crystals and include n-p-cyano-p-hexylbiphenyl (K18), 4-n-hepthyl-4′-cyanobiphenyl (K21), ethyl-cyclohexyl-ethyl-6-fluoro – n-propyl-biphenyl (I32), n-propyl-cyclohexyl-ethyl-6-fluoro – n-butyl-biphenyl (I43) and a n-pentyl-cyclohexyl-cyanophenyl : n-heptyl-cyclohexyl-cyanophenyl mixture. Rotational viscosity measurements were carried out over a temperature range from ambient to ∼90°C. Comparison of the values at a temperature of 5 K above the below the clearing point indicate an odd–even effect as the chain length of the hydrocarbon tail is altered. The principle viscosities η1, η2, η3 and η45were measured using an oscillating plate viscometer and the temperature dependences used to calculate the activation energies for flow in the various directions. The magnitude of the activation energy is shown to change with the length of the hydrocarbon chain. The incorporation of the cyclohexyl group imparts flexibility and reduces the activation energy flow, whilst the presence of the fluoro group increases the interactions between molecules, and this is reflected in higher values of the viscosity. The change of viscosity with alignment angle is explored for two of the systems studied and the fit to theory investigated. The Leslie–Ericksen coefficients are calculated for these systems and discussed in terms of changes in the molecular interactions.

Acknowledgements

The authors wish to acknowledge the support of EPSRC for the funding of the magnet, without which this study could not have been undertaken. One of us (RO) wishes to acknowledge the support of an EPSRC CASE award with Merck and additional financial support from RSRE.

Notes

This paper is dedicated to the memory of Professor F.M. Leslie who was a co-investigator of the research described here.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.