128
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Interaction of electromagnetic waves in planar waveguide with a nematic layer

&
Pages 1322-1332 | Received 24 Apr 2013, Accepted 10 Jun 2013, Published online: 02 Jul 2013
 

Abstract

This work is a theoretical study of energy exchange between two coupled TE-wave modes on director diffraction grating in a planar waveguide containing a layer of nematic liquid crystal. The diffraction grating is produced by an external electric field in the nematic layer with spatial periodic anchoring energy between director and waveguide surface. The intensity of a signal mode at the output of the nematic layer has been calculated in dependence of anchoring energy amplitude and modulation period, the size of nematic layer and electrical field value. The cases of co-propagating and oppositely propagating modes have been analysed. The analytical expressions that describe the maximum values of signal mode intensity have been derived. The maximum intensity value output from the nematic has been shown to depend monotonously on the anchoring energy parameters in the case of oppositely propagating wave modes and non-monotonously in the case of co-propagating wave modes. In both cases, the maximum value of signal mode intensity grows with the increase in electric field.

Acknowledgement

The authors express gratitude to prof. Pinkevich I.P. for useful observations in the discussion of the results.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.