171
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Inductive effect for the phase stability in hydrogen bonded liquid crystals, x-(p/m)BA:9OBAs

, , , &
Pages 184-196 | Received 04 Aug 2013, Accepted 16 Sep 2013, Published online: 04 Nov 2013
 

Abstract

A new series of hydrogen bonded liquid crystal (HBLC) complexes, made up with substituted benzoic acids (BAs) and nonyloxy benzoic acid, viz., x-(p/m)BA:9OBAs are reported for x = F, Cl, Br and –CH3 substituted at para (p) or meta (m) positions of BA moiety. Proton nuclear magnetic resonance (1H-NMR) spectrum confirms the HBLC complex. Infra red (IR) spectrum confirms linear, double and complementary type of hydrogen bonding (HB) between x-(p/m)BAs and 9OBA. The liquid crystal (LC) phases are characterised by polarisation optical microscopy (POM) and differential scanning calorimetry (DSC) techniques. x-(p/m)BA:9OBA exhibit N, C and G LC phase variance. HB induces tilted phases and enhances LC phase stability. The influence of configuration, size, electronegativity, electron directing capacity and inductive nature of substituent (x) is investigated for the stability of LC phases. An overview of the LC phase data indicates predominant ‘negative inductive effect’ in HBLCs with electron withdrawing substituents. Inductive effect operates effectively for para substitutions. Results are discussed in the wake of reports in other HBLCs.

Funding

The authors acknowledge the grant provided by Department of Science and Technology, India, DST/SR/S2/CMP-0063/2008.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.