211
Views
5
CrossRef citations to date
0
Altmetric
Articles

Photo-induced alignment behaviour of polymerisable liquid crystals on bisazide in a polymer matrix

, &
Pages 910-919 | Received 11 Dec 2015, Accepted 27 Jan 2016, Published online: 08 Mar 2016
 

ABSTRACT

Photo-reactive bisazide in a polymer matrix containing acryloyl groups on the side chain was investigated as a photoalignment layer for polymerizable liquid crystals (PLC). We found the thin film of bisazide (2,6-bis(4-azidobenzylidene)-4-methyl-1-cyclohexanone) in a polymer matrix, irradiated by linearly polarised ultraviolet light (LPUVL), was able to homogeneously align PLC. The LPUVL irradiation dose changed the orientation direction of the PLC on the thin film of bisazide in the polymer matrix. In addition, the direction of the slow axis for the retardation of the photoalignment layer changed from parallel to perpendicular to the LPUVL electric field with the irradiation dose. From these results, it was suggested that the PLC was likely to be aligned along the slow axis of the retardation of the photoalignment layer. We concluded that the key mechanism that changed the direction of the slow axis in a plane was the photoreaction of azide–acrylate at low irradiation dose and that of bis(benzylidene)cyclohexanone at high irradiation dose. Although the photoalignment as a result of a simple photo cross-linking was previously little known except for photo-dimerisation, we revealed that the photoaddition of azide–acrylate is able to achieve the photoalignment.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.