546
Views
38
CrossRef citations to date
0
Altmetric
Invited Article

New insights into the role of hydrogen bonding on the liquid crystal behaviour of 4-alkoxybenzoic acids: a detailed IR spectroscopy study

, &
Pages 2191-2207 | Received 02 Jun 2016, Published online: 02 Aug 2016
 

ABSTRACT

Hydrogen bonding is an efficient alternative to covalent bonding as a way to stabilise liquid crystallinity, by yielding symmetric and non-symmetric complexes with increased molecular anisotropy. In designing new hydrogen-bonded liquid crystals, HBLCs, it is crucial to account for the competing hydrogen bonds that can lead to different supramolecular species coexisting in a temperature-dependent equilibrium. Thus, as part of a systematic development of this area, in the present work we study with detail the relationships between the phase behaviour and hydrogen bonding in a series of 4-n-alkoxybenzoic acids, nOBAs, which are widely used as components in HBLCs. Five acids with alkyl chain lengths of n = 1, 4, 5, 7 and 8 have been investigated using Fourier transform infrared spectroscopy, FTIR, in a broad range of temperatures under two different experimental configurations: sandwiched between potassium bromide, KBr, windows and dispersed in KBr discs. The nematic phase is correlated with the amounts of closed dimers between acid molecules, through the formation of strong hydrogen bonds. Moreover, high concentrations of open dimers are found in samples sandwiched between KBr slides, which are linked to the appearance of smectic-like aggregates that perturb the local order of the nematic phase. The results are interpreted in terms of the ability of the 4-alkoxybenzoic acids to align due to surface interactions, which are less acute in samples dispersed in the discs. These effects must be taken into account in order to correctly interpret the information about the supramolecular species present in the samples, and thus to better understand the relationships between hydrogen bond strength and mesomorphism in HBLCs.

Graphical Abstract

Acknowledgements

The authors would like to acknowledge Prof. Corrie T. Imrie for his participation during the discussion of the results, and Prof. John M.D. Storey and Mr. Brian Paterson for their support. MJA would also like to thank the College of Physical Sciences, the Department of Chemistry and the School of Engineering of the University of Aberdeen for the award of his PhD grant.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplemental data

Supplemental data for this article can be accessed here.

References

  • Broer DJ, Bastiaansen CMW, Debije MG, et al. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems. Angew Chem Int Ed. 2012;51(29):7102–7109. doi:10.1002/anie.201200883.
  • Kato T, Kamikawa Y. Hydrogen-bonded systems: discrete defined aggregates by intermolecular H-bonding, amides, carboxylic acids, and heterocycles. In: Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson H, editors. Handbook of liquid crystals, 8 volume set. 2nd ed. Weinheim: Wiley; 2014. p. 513–540.
  • Kato T, Frechet JMJ. Development of supramolecular hydrogen-bonded liquid crystals and its impact on liquid-crystalline and materials science. Liq Cryst. 2006;33(11–12):1429–1433. doi:10.1080/02678290601119807.
  • Tal’roze RV, Shatalova AM, Shandryuk GA. Development and stabilization of liquid crystalline phases in hydrogen-bonded systems. Polymer Sci Ser B. 2009;51(3–4):57–83. doi:10.1134/S1560090409030014.
  • Paleos CM, Tsiourvas D. Supramolecular hydrogen-bonded liquid crystals. Liq Cryst. 2001;28(8):1127–1161. doi:10.1080/02678290110039516.
  • Gray GW, Jones B. Mesomorphism of some alkoxynaphthoic acids. Nature. 1951;167(4237):83–84. doi:10.1038/167083b0.
  • Gray GW, Jones B. Influence of substituents on the mesomorphism of para-normal-alkoxybenzoic and 6-normal-alkoxy-2-naphthoic acids. Nature. 1952;170(4324):451–452. doi:10.1038/170451a0.
  • Gray GW, Jones B. The mesomorphic transition points of the para-normal-alkoxybenzoic acids - A correction. J Chem Soc. 1953 Dec;4179–4180. doi:10.1039/JR9530004168
  • Gray GW, Jones B. Mesomorphism and chemical constitution 1. The normal-alkoxynaphthoic acids. J Chem Soc. 1954 Feb;683–686. doi:10.1039/jr9540000683.
  • Gray GW, Jones B. Mesomorphism and chemical constitution. Part III. The effect of halogen substitution on the mesomorphism of the 4-alkoxybenzoic acids. J Chem Soc (Resumed). 1954 Jul;2556–2562. doi:10.1039/jr9540002556.
  • Bradfield AE, Jones B. Two apparent cases of liquid crystal formation. J Chem Soc. 1929;2660–2661. doi:10.1039/JR9290002660.
  • Bennett GM, Jones B. Mesomorphism and polymorphism of some p-alkoxybenzoic and p-alkoxycinnamic acids. J Chem Soc. 1939;420–425. doi:10.1039/jr9390000420.
  • Kato T, Frechet JMJ. New approach to mesophase stabilization through hydrogen-bonding molecular-interactions in binary-mixtures. J Am Chem Soc. 1989;111(22):8533–8534. doi:10.1021/ja00204a044.
  • Kato T, Frechet JMJ. Stabilization of a liquid-crystalline phase through noncovalent interaction with a polymer side-chain. Macromolecules. 1989;22(9):3818–3819. doi:10.1021/ma00199a060.
  • Brienne MJ, Gabard J, Lehn JM, et al. Macroscopic expression of molecular recognition - supramolecular liquid-crystalline phases induced by association of complementary heterocyclic components. J Chem Soc Chem Commun. 1989;24:1868–1870. doi:10.1039/c39890001868.
  • Cano M, Sanchez-Ferrer A, Luis Serrano J, et al. Supramolecular architectures from bent-core dendritic molecules. Angew Chem Int Ed. 2014;53(49):13449–13453. doi:10.1002/anie.201407705.
  • Barbera J, Gimeno N, Pintre I, et al. Self-assembled bent-core side-chain liquid crystalline polymers. Chem Commun. 2006;11:1212–1214. doi:10.1039/b516718c.
  • Pérez A, Gimeno N, Vera F, et al. New H-bonded complexes and their supramolecular liquid-crystalline organizations. European J Org Chem. 2008;2008(5):826–833. doi:10.1002/(ISSN)1099-0690.
  • Beltrán E, Luis Serrano J, Sierra T, et al. Tris(triazolyl)triazine via click-chemistry: a C-3 electron-deficient core with liquid crystalline and luminescent properties. Org Lett. 2010;12(7):1404–1407. doi:10.1021/ol902900y.
  • Kato T, Fujishima A, Frechet JMJ. Self-assembly of a twin liquid-crystalline complex through intermolecular hydrogen bondings. Chem Lett. 1990;6:919–922. doi:10.1246/cl.1990.919.
  • Wallage MJ, Imrie CT. Supramolecular dimeric liquid crystals. The liquid crystalline behaviour of mixtures of alpha-(4-pyridyloxy)-omega- 4-(4-butylphenylazo)phenoxy alkanes and 4-octyloxybenzoic acid. J Mater Chem. 1997;7(7):1163–1167. doi:10.1039/a700848a.
  • Paterson DA, Martinez-Felipe A, Jansze SM, et al. New insights into the liquid crystal behaviour of hydrogen-bonded mixtures provided by temperature-dependent FTIR spectroscopy. Liq Cryst. 2015;5-6:928–939.
  • Martinez-Felipe A, Imrie CT. The role of hydrogen bonding in the phase behaviour of supramolecular liquid crystal dimers. J Mol Struct. 2015;1100:429–437. doi:10.1016/j.molstruc.2015.07.062.
  • Wolf JR. Review: main chain hydrogen-bonded liquid crystalline polymers. Liq Cryst Rev. 2014;2(1):28–46. doi:10.1080/21680396.2014.929984.
  • Kato T, Nakano M, Moteki T, et al. Supramolecular liquid-crystalline side-chain polymers built through a molecular recognition process by double hydrogen bonds. Macromolecules. 1995;28(26):8875–8876. doi:10.1021/ma00130a026.
  • Del Barrio J, Blasco E, Oriol L, et al. Diblock copolymerazobenzene complexes through hydrogen bonding: self-assembly and stable photoinduced optical anisotropy. J Polym Sci A Polym Chem. 2013;51(8):1716–1725. doi:10.1002/pola.26523.
  • Kato T, Kihara H, Uryu T, et al. Molecular self-assembly of liquid-crystalline side-chain polymers through intermolecular hydrogen-bonding - polymeric complexes built from a polyacrylate and stilbazoles. Macromolecules. 1992;25(25):6836–6841. doi:10.1021/ma00051a018.
  • Stewart D, Imrie CT. Supramolecular side-chain liquid-crystal polymers .1. Thermal-behavior of blends of a low molar-mass mesogenic acid and amorphous polymers. J Mater Chem. 1995;5(2):223–228. doi:10.1039/JM9950500223.
  • Bazuin CG, Brandys FA. Novel liquid-crystalline polymeric materials via noncovalent grafting. Chem Mater. 1992;4(5):970–972. doi:10.1021/cm00023a005.
  • Stewart D, Imrie CT. Toward supramolecular side-chain liquid crystal polymers .5. The template receptor approach. Macromolecules. 1997;30(4):877–884. doi:10.1021/ma960899y.
  • Stewart D, Paterson BJ, Imrie CT. Towards supramolecular side-chain liquid crystal polymers .4. Blends of low molar mass mesogens with amorphous polymers. Eur Polym J. 1997;33(3):285–290. doi:10.1016/S0014-3057(96)00157-7.
  • Kato T, Kihara H, Ujiie S, et al. Structures and properties of supramolecular liquid-crystalline side-chain polymers built through intermolecular hydrogen bonds. Macromolecules. 1996;29(27):8734–8739. doi:10.1021/ma9609341.
  • Kato T, Kihara H, Kumar U, et al. A liquid-crystalline polymer network built by molecular self-assembly through intermolecular hydrogen-bonding. Angew Chem Int Ed English. 1994;33(15–16):1644–1645. doi:10.1002/anie.199416441.
  • Schenning APHJ, Gonzalez-Lemus YC, Shishmanova IK, et al. Nanoporous membranes based on liquid crystalline polymers. Liq Cryst. 2011;38(11–12):1627–1639. doi:10.1080/02678292.2011.603504.
  • Lee JY, Painter PC, Coleman MM. Hydrogen-bonding in polymer blends.4. Blends involving polymers containing methacrylic-acid and vinylpyridine groups. Macromolecules. 1988;21(4):954–960. doi:10.1021/ma00182a019.
  • Kato T, Wilson PG, Fujishima A, et al. Hydrogen-bonded liquid-crystals - a novel mesogen incorporating nonmesogenic 4,4ʹ-bipyridine through selective recognition between hydrogen-bonding donor and acceptor. Chem Lett. 1990;11:2003–2006. doi:10.1246/cl.1990.2003.
  • Odinokov SE, Iogansen AV. Torsional gamma-(OH) vibrations, fermi resonance 2gamma-(OH) – NU-isotopic effects in IR-spectra of h-complexes of carboxylic-acids with strong bases. Spectrochim Acta Part A Mol Spectrosc. 1972;A 28(12):2343. doi:10.1016/0584-8539(72)80214-9.
  • St Pourcain CB. An infrared study of hydrogen bond stability in benzoic acid-trans-1,2-bis(4-pyridyl)ethylene complexes in the solid state and the implications for the design of supramolecular polymers. J Mater Chem. 1999;9(11):2727–2730. doi:10.1039/a905581i.
  • Johnson SL, Rumon KA. Infrared spectra of solid 1-1 pyridine-benzoic acid complexes. Nature of hydrogen bond as a function of acid-base levels in complex. J Phys Chem. 1965;69(1):74. doi:10.1021/j100885a013.
  • Xu H, Kang N, Xie P, et al. A new insight into the hydrogen-bonded liquid crystals built from carboxylic acids and pyridyl moieties. Mol Cryst Liq Cryst. 2002;373:119–126. doi:10.1080/10587250210537.
  • Efremova EI, Shiryaev AA, Kydryashova ZA, et al. Study of phase behavior in a system of linear hydrogen-bonded carboxylic acid homologues. Phase Transit. 2015;88(5):503–512. doi:10.1080/01411594.2014.989227.
  • Sparavigna A, Mello A, Montrucchio B. Texture transitions in the liquid crystalline alkyloxybenzoic acid 6OBAC. Phase Transitions. 2006;79(4–5):293–303. doi:10.1080/01411590600748132.
  • Kumar PA, Srinivasulu M, Pisipati V. Induced smectic G phase through intermolecular hydrogen bonding. Liq Cryst. 1999;26(9):1339–1343. doi:10.1080/026782999204002.
  • Kuz’mina LG, Kucherepa NS, Pestov SM, et al. Molecular and crystal structure of 4-alkoxybenzoic acids: design of the mesogenic phase. Crystallogr Rep. 2009;54(5):862–879. doi:10.1134/S1063774509050204.
  • Wolfs I, Desseyn HO. Modelling the vibrational behaviour of the cyclic carboxylic acid dimer. SQM force field of the formic acid dimer. Theochem J Mol Struct. 1996;360:81–97. doi:10.1016/0166-1280(95)04366-7.
  • Ratajczak-Sitarz M, Katrusiak A. Coupling of molecular orientation with the hydrogen-bond dimensions and H-sites in carboxylic acids. J Mol Struct. 2011;995(1–3):29–34. doi:10.1016/j.molstruc.2011.03.031.
  • Sastry SS, Sarada KL, Mallika K, et al. Eigen value analysis studies on hydrogen-bonded mesogens. Liq Cryst. 2014;41(10):1483–1494. doi:10.1080/02678292.2014.927539.
  • Sparavigna A, Melloy A, Montrucchioz B. Texture transitions in binary mixtures of 6OBAC with compounds of its homologous series. Phase Transitions. 2007;80(3):191–201. doi:10.1080/01411590601007603.
  • Sparavigna A, Mello A, Massa G. Undulation textures at the phase transitions of some alkyloxybenzoic acids. Phase Transitions. 2009;82(5):398–408. doi:10.1080/01411590902898874.
  • Kang SK, Samulski ET, Kang P, et al. Liquid crystals comprising hydrogen-bonded organic acids - II. Heterodimers in mixed mesogenic acids. Liq Cryst. 2000;27(3):377–385. doi:10.1080/026782900202831.
  • Kang SK, Samulski ET. Liquid crystals comprising hydrogen-bonded organic acids - I. Mixtures of non-mesogenic acids. Liq Cryst. 2000;27(3):371–376. doi:10.1080/026782900202822.
  • Prabu NPS, Mohan MLNM. Systematic studies on eight homologous series of supramolecular hydrogen bonded liquid crystals. Phase Transitions. 2013;86(4):339–360. doi:10.1080/01411594.2012.682729.
  • Kato T, Fukumasa M, Frechet JMJ. Supramolecular liquid-crystalline complexes exhibiting room-temperature mesophases and electrooptic effects - hydrogen-bonded mesogens derived from alkylpyridines and benzoic-acids. Chem Mater. 1995;7(2):368–372. doi:10.1021/cm00050a021.
  • Kato T, Frechet JMJ, Wilson PG, et al. Hydrogen-bonded liquid-crystals - novel mesogens incorporating nonmesogenic bipyridyl compounds through complexation between h-bond donor and acceptor moieties. Chem Mater. 1993;5(8):1094–1100. doi:10.1021/cm00032a012.
  • Tian TQ, Su FY, Zhao YY, et al. Synthesis and variable-temperature ftir study of 5 chiral liquid-crystals induced by intermolecular hydrogen-bonding. Liq Cryst. 1995;19(6):743–748. doi:10.1080/02678299508031093.
  • Mallia VA, Das S. Synthesis and studies of some cholest-5-en-3-ol-(3 beta)[4-phenylpyridylazo]carbonate-containing supramolecular hydrogen-bonded mesogens. Liq Cryst. 2001;28(2):259–264. doi:10.1080/02678290010006315.
  • Vijayakumar VN, Mohan MLNM. Study of thermal and electrical properties exhibited by two ferroelectric self assembly systems. J Mol Struct. 2011;991(1–3):60–67. doi:10.1016/j.molstruc.2011.01.068.
  • Vijayakumar VN, Mohan MLNM. A study of field induced transitions (FiT) in the nematic phase of an inter hydrogen bonded ferroelectric liquid crystal. Solid State Sci. 2010;12(4):482–489. doi:10.1016/j.solidstatesciences.2009.12.012.
  • Vijayakumar VN, Mohan MLNM. Design and characterization of hydrogen bonded ferroelectric liquid crystals: A study of light modulation in nematic and smectic orderings. Optik. 2012;123(12):1044–1050. doi:10.1016/j.ijleo.2011.07.028.
  • Kirov N, Ratajczak H. IR and FIR absorption-spectra of the solid modifications formed by some para,normal-alkoxybenzoic acids upon heating and cooling. J Mol Struct. 1980 Jan;61:207–213. doi:10.1016/0022-2860(80)85131-3.
  • Kirov N, Fontana MP, Cavatorta F, et al. Ir, fir, raman and thermodynamic investigations of para-normal-alkoxybenzoic acids in their solid, mesomorphic and isotropic phases. Mol Cryst Liq Cryst. 1981;75(1–4):303–320. doi:10.1080/00268948108073622.
  • Antonova K, Petrov M, Kirov N, et al. Far-ir spectroscopic investigations of nematic liquid-crystals with hydrogen-bonded molecules. J Mol Struct. 1994;325:189–201. doi:10.1016/0022-2860(94)80035-9.
  • Petrov M, Anachkova E, Kirov N, et al. Ir spectroscopic investigations of peculiar behavior of 4,n-alkoxybenzoic acids in their mesomorphic state .1. Nonaligned samples. J Mol Liq. 1994;61(1–3):221–230. doi:10.1016/0167-7322(94)00762-4.
  • Petrov M, Antonova K, Kirov N, et al. The macroscopic behavior of nematics with hydrogen-bonded molecules - explanation through far-ir spectroscopy. J Mol Struct. 1994;327(2–3):265–273. doi:10.1016/0022-2860(94)06170-X.
  • Kusakov MM, Khodzhae V, Shishkin M, et al. Infrared dichroism study of liquid crystals of normal alkoxybenzoic acids. Soviet Phys Crystallogr USSR. 1969;14(3):398.
  • Kusakov MM, Shishkin M, Khodzhae V. On liquid-crystal state of N-P-alkyloxybenzoic acids. Dokl Akad Nauk SSSR. 1969;186(2):366.
  • Martinez-Felipe A, Cook AG, Wallage MJ, et al. Hydrogen bonding and liquid crystallinity of low molar mass and polymeric mesogens containing benzoic acids: a variable temperature fourier transform infrared spectroscopic study. Phase Transitions. 2014;87(12):1191–1210. doi:10.1080/01411594.2014.900556.
  • Azima A, Brown CW, Mitra SS. Temperature-dependence of IR-spectra of liquid-crystalline p-heptoxybenzoic acid and p-octoxybenzoic acid. Spectrochim Acta Part A Mol Biomol Spectrosc. 1975;31(9–10):1475–1479. doi:10.1016/0584-8539(75)80204-2.
  • Kato T, Jin C, Kaneuchi F, et al. Effect of the molecular-orientation on the stability of hydrogen-bonded benzoic-acid dimers - infrared study of liquid-crystalline 4-alkylbenzoic acids. Bull Chem Soc Jpn. 1993;66(12):3581–3584. doi:10.1246/bcsj.66.3581.
  • Torgova SI, Komitov L, Strigazzi A. Spontaneous chiral domains in the nematic phase of achiral trans-4-alkylcyclohexanecarboxylic acids. Liq Cryst. 1998;24(1):131–141. doi:10.1080/026782998207668.
  • Painter P, Cleveland C, Coleman M. An infrared spectroscopic study of p-n-alkoxybenzoic acids. Mol Cryst Liq Cryst. 2000;348:269–293. doi:10.1080/10587250008024811.
  • Fonseca JMS, Santos LMNBF, Monte MJS. Thermodynamic study of 4-n-alkyloxybenzoic acids. J Chem Eng Data. 2010;55(6):2238–2245. doi:10.1021/je900776y.
  • Lee JY, Painter PC, Coleman MM. Hydrogen-bonding in polymer blends .3. Blends involving polymers containing methacrylic-acid and ether groups. Macromolecules. 1988;21(2):346–354. doi:10.1021/ma00180a011.
  • Odinokov SE, Mashkovsky AA, Glazunov VP, et al. Spectral manifestations of intermolecular and interionic hydrogen-bonding in adducts of various acids with pyridine. Spectrochim Acta Part A Mol Biomol Spectrosc. 1976;32(6):1355–1363. doi:10.1016/0584-8539(76)80181-X.
  • Rosenber M, Mashkovs A, Odinokov SE, et al. Torsional and librational frequencies of A-H groups as related to H-bonding energies. Spectrosc Lett. 1972;5(3–4):75. doi:10.1080/00387017208064689.
  • Martinez-Felipe A, Imrie CT, Ribes-Greus A. Study of structure formation in side-chain liquid crystal copolymers by variable temperature fourier transform infrared spectroscopy. Ind Eng Chem Res. 2013;52(26):8714–8721. doi:10.1021/ie303130e.
  • Coats AM, Hukins DWL, Imrie CT, et al. Polarization artefacts of an FTIR microscope and the consequences for intensity measurements on anisotropic materials. J Microsc Oxford. 2003;211:63–66. doi:10.1046/j.1365-2818.2003.01198.x.
  • Cook AG, Martinez-Felipe A, Brooks NJ, et al. New insights into the transitional behaviour of methyl-6-O-(n-dodecanoyl)-alpha-D-glucopyranoside using variable temperature FTIR spectroscopy and X-ray diffraction. Liq Cryst. 2013;40(12):1817–1827. doi:10.1080/02678292.2013.854556.
  • Cook AG, Wardell JL, Brooks NJ, et al. Non-symmetric liquid crystal dimer containing a carbohydrate-based moiety. Carbohydr Res. 2012;360:78–83. doi:10.1016/j.carres.2012.07.018.
  • Petrov M, Antonova K, Baran J, et al. The surface action on dimer-monomer liquid crystal system. J Mol Struct. 2001;561(1–3):153–159. doi:10.1016/S0022-2860(00)00917-0.
  • Torgova SI, Petrov MP, Strigazzi A. Textures of homologous 4-n-alkyloxybenzoic acids: spontaneous chirality and surface memory. Liq Cryst. 2001;28(10):1439–1449. doi:10.1080/02678290010007215.
  • Marcerou JP, Petrov MP, Naradikian H, et al. Dendrite-like texture growth in the nematic liquid crystal phase of 4-n-heptyl- and 4-n-octyl-oxybenzoic acids aligned by a polyimide coating. Liq Cryst. 2004;31(3):311–316.
  • Ilyin SO, Konstantinov II. Rheological evidence for the existence of subphases in the liquid crystalline 4-n-alkoxybenzoic acids. Liq Cryst. 2016;43(3):369–380.
  • Bryan RF, Hartley P. An x-ray study of the para-n-alkoxybenzoic acids .5. Crystal-structures of the nematogenic acids having 3 and 5 alkyl-chain carbon-atoms. Mol Cryst Liq Cryst. 1980;62(3–4):259–279. doi:10.1080/00268948008084026.
  • Bryan RF, Hartley P, Miller RW, et al. An X-ray study of the para-N-alkoxybenzoic acids .6. Isotypic crystal-structures of 4 smectogenic acids having 7, 8, 9, and 10 alkyl chain carbon-atoms. Mol Cryst Liq Cryst. 1980;62(3–4):281–309. doi:10.1080/00268948008084027.
  • Jansze SM, Martinez-Felipe A, Storey JMD, et al. A twist-bend nematic phase driven by hydrogen bonding. Angew Chem Int Ed. 2015;54(2):643–646.
  • Dozov I. On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules. Europhys Lett. 2001;56(2):247–253. doi:10.1209/epl/i2001-00513-x.
  • Cestari M, Diez-Berart S, Dunmur DA, et al. Phase behavior and properties of the liquid-crystal dimer 1 “,7 “-bis(4-cyanobiphenyl-4 ‘- yl) heptane: A twist-bend nematic liquid crystal. Phys Rev E. 2011;84:3. doi:10.1103/PhysRevE.84.031704.
  • Kato T, Uryu T, Kaneuchi F, et al. Hydrogen-bonded liquid-crystals built from hydrogen-bonding donors and acceptors - infrared study on the stability of the hydrogen-bond between carboxylic-acid and pyridyl moieties. Liq Cryst. 1993;14(5):1311–1317. doi:10.1080/02678299308026444.
  • Bryan RF, Fallon L. X-ray study of para-normal-alkoxybenzoic acids .4. Crystal-structure of para-normal-butoxybenzoic acid. J Chem Soc Perkin Trans. 1975;2(11):1175–1180. doi:10.1039/p29750001175.
  • Petrov M, Katranchev B, Rafailov PM, et al. Smectic C liquid crystal growth and memory effect through surface orientation by carbon nanotubes. J Mol Liq. 2013;180:215–220. doi:10.1016/j.molliq.2013.01.015.
  • Petrov M, Katranchev B, Rafailov PM, et al. Phases and properties of nanocomposites of hydrogen-bonded liquid crystals and carbon nanotubes. Phys Rev E. 2013;88(4):042503. doi:10.1103/PhysRevE.88.042503.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.