103
Views
4
CrossRef citations to date
0
Altmetric
Articles

Structural, dielectric and conductivity behaviours of cetyltrimethylammonium bromide/ethylene glycol-based quenched lyotropic mesophases

&
Pages 381-387 | Received 11 Feb 2017, Accepted 10 May 2017, Published online: 29 May 2017
 

ABSTRACT

The present study highlights the effect of quenching on the structural, textural and dielectric dynamics of cetyltrimethylammonium bromide/ethylene glycol binary mixtures of varying concentrations 30:70, 50:50 and 75:25 wt.%. No mesomorphism is seen in the as-prepared binary mixtures as X-ray diffraction and polarisation optical microscopy studies reveal the crystalline-like structures for the studied concentrations. With the effect of quenching, lyotropic hexagonal phase is obtained at 30:70, 50:50 wt.% concentration; however, mixture with higher 75:25 wt.% concentrations exhibit crystalline-like phase. The obtained hexagonal lyotropic phases restrain the mesomorphism up to ≈340 K and then show crystalline-like structures with the further increase in the temperature. Dielectric and relaxation behaviours of hexagonal lyotropic phases are presented in this study. The relaxation parameters of lyotropic phases are also discussed. Interestingly, the hexagonal lyotropic phases obtained for 30:70 and 50:50 wt.% concentrations exhibit ac conductivity of the order of 10–5 S/m, which can be seen as a significant result of this study.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplemental data

Supplemental data for this article can be accessed here.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.