137
Views
19
CrossRef citations to date
0
Altmetric
Articles

Effect of position of the lateral fluoro substituent on the mesophase behaviour of aryl 4-alkoxyphenylazo benzoates in pure and binary mixtures

, &
Pages 1487-1497 | Received 26 Dec 2017, Accepted 03 Mar 2018, Published online: 13 Mar 2018
 

ABSTRACT

Five groups of 4-substituted phenyl 4ʹ-(2ʺ- (or 3″-) substituted-4ʺ-alkoxyphenylazo) benzoates (Ina-c to Vna-c) were investigated in which, within each group, the length of the terminal alkoxy group varies between 8 and 16 carbons, while the other terminal substituent, X, is a polar group that alternatively changed between the electron-donating CH3O and the electron-withdrawing Br group, in addition to the un-substituted analogue (X = H). The lateral substituent (Y) in the five groups IV varies, respectively, between H, 3-CH3, 2-CH3, 3-F and 2-F. Their mesophase stabilities were determined by differential scanning calorimetry and phases identified by polarised light microscopy. The two newly prepared groups of compounds (IVna-c and Vna-c) are structurally characterised by infrared, 1H-NMR, mass spectroscopy, thermogravimetric and elemental analyses. Binary phase diagrams were constructed for each pair of isomers from groups IV and V bearing the same wing substituents but the lateral F is attached to different positions (2ʺ or 3″).

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary material

Supplemental data for this article can be accessed here.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.