127
Views
1
CrossRef citations to date
0
Altmetric
Article

Multi-layer protruded electrodes for reducing the operating voltage and gamma shift of fringe-field switching LCDs

ORCID Icon, , , , , & show all
Pages 572-581 | Received 16 Aug 2019, Accepted 28 Aug 2019, Published online: 09 Sep 2019
 

ABSTRACT

To reduce the operating voltage and gamma shift of the nematic liquid crystal display (LCD), a single-domain-protruded fringe-field switching (PFFS) electrode structure is designed. In this work, a kind of nematic liquid crystal (NLC) is introduced firstly. Then, the operating voltage and gamma shift of the proposed PFFS LCD are investigated under various electrodes’ parameters. Besides, its light leakage and contrast ratio are also discussed. The results show that the operating voltage of the PFFS LCD is only 1.40 V, here the electrodes’ width is 2 μm and electrodes’ gap is 4 μm. The gamma shift of the PFFS LCD can be reduced to the indistinguishable level under various electrodes’ sizes, if the height of the insulation layer is proper. For contrast ratio, it is larger than 200:1 at full viewing-angle, and the zone of 500:1 covers 60° polar angle.

Graphical abstract

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Key R&D Program of China [Grant Number 2018YFB0703701], and the National Natural Science Foundation of China [Grant Number 61475042].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.