36
Views
19
CrossRef citations to date
0
Altmetric
Invited Lecture

Properties of side chain liquid crystal and amorphous polymers. Applications to non-linear optics

, , , &
Pages 197-213 | Published online: 17 Feb 2007
 

Abstract

Comb-like liquid-crystalline polymers exhibit many unique properties that challenge not only basic research but also numerous technological opportunities. They combine (partly) the properties of orientation of low molecular weight liquid crystals with the rigidity of polymers. For example, they can be oriented in the mesomorphic state and the structure frozen in a glassy state. These polymers with functionalized pendent groups lead to potential applications in the field of nonlinear optics, or in the domain of electro-optical displays. Other polymers like polysilanes show interesting properties such as photo-conductivity. This paper describes the properties and applications of some new side chain liquid-crystalline polyacrylates and their amorphous copolymers. It also describes the photo-conductive properties of polysilanes and their applications in spatial light modulators with liquid crystals. In the first part of this paper, we describe the properties of liquid crystal copolymers and amorphous polyacrylate copolymers with cyanobiphenyls and/or pendent groups with a large hyperpolarizability. Their different properties are compared with some recent results from the literature. These amorphous copolymers allow one to obtain, after poling in an electric field, high optical non-linear coefficients. We have used these copolymers for the manufacture of an electro-optic modulator working at 1·3 μm in the frequency range of 1 GHz. Applications to second harmonic generation at 1·06 μm are also discussed. In the second part of this paper we describe the photo-conductive properties of polysilanes and the realization and performance of an organic spatial light modulator for optical correlation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.