23
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Non-linear dielectric spectra of ferroelectric liquid crystals

&
Pages 427-434 | Published online: 24 Sep 2006
 

Abstract

The non-linear dielectric relaxation spectroscopy has been recently developed and applied to soft materials such as polymers. We have applied this new method to the S*C phases of some ferroelectric liquid crystals. Under a weak AC electric field, the original and third order harmonic frequency components of electric displacement are proportional to the first and third powers of the applied electric field, respectively. The linear spectrum obtained from the original frequency component shows the relaxation of Debye type and the third order non-linear spectrum shows the relaxation with an extended form of Debye type to the non-linear case. The third order non-linear dielectric increment is found to be negative, which implies that the dielectric non-linearity of the liquid crystal in the S*C phase is due to the saturation of molecular dipole moments induced by the applied electric field. The temperature dependence of the linear and third order non-linear spectra in the S*C phase are also studied. Both spectra do not change their forms much through the whole temperature range of the S*C phase. In the vicinity of the SA–S*C transition temperature, the critical behaviour is more remarkable in the third order spectrum than in the linear one.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.