35
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Anisotropy of non-mesogenic polymer networks dispersed in a liquid crystal matrix

, &
Pages 601-605 | Received 12 Aug 1994, Accepted 26 Sep 1994, Published online: 24 Sep 2006
 

Abstract

We report here original results characterizing in situ the interactions between a smectic liquid crystal phase and a polymer network dispersed in it. These results have been obtained by neutron scattering on smectic liquid crystal (8CB) samples containing a physical network of 1.5wt% polymer. The samples were polymerized in the isotropic, or in the smectic A phases. For the first time it is experimentally proved that the polymerization of non-mesogenic monomers in an aligned smectic A matrix induces anisotropy in the resulting network. The network becomes elongated along the liquid crystal director. When the polymerization is carried out in the isotropic phase the polymer network has an isotropic distribution even if a magnetic field, which orients the liquid crystal director, is later applied. On the other hand, studies show that after several thermal cycles, the liquid crystal orientational order still remained. Without other external constraints, the polymer network freezes the alignment of the liquid crystal. It is probably imposed by pendant reticulates on the diffuse liquid crystal-polymer interfaces.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.