46
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Numerical analysis of the radial-axial structure transition with an applied field in a nematic droplet

Pages 193-203 | Received 01 Sep 2001, Published online: 06 Aug 2010
 

Abstract

In this paper the director configurations and the free energies of a nematic droplet with a surface normal anchoring condition are calculated numerically. For this surface anchoring, a transition occurs between the radial and axial structures with respect to an applied field. In the calculation of the director configurations, the position of a disclination has been fixed. Comparing the free energies for different disclinations, the stable position which gives the minimum free energy is found. In calculating the free energy of a droplet, it is assumed that the free energy density of the nematic phase does not exceed the isotropic free energy density, so that the large distortion in the vicinity of the disclination causes a nematic-isotropic transition and the free energy density of the disclination core becomes equal to the isotropic free energy density. The director configuration in a droplet is calculated as a function of an applied field for different isotropic free energy densities, elastic constant ratios and droplet shapes. The relation between the radial-axial structure transition and these factors are clarified.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.