170
Views
27
CrossRef citations to date
0
Altmetric
Research Article

A Single Local Injection of Recombinant VEGF Receptor 2 But Not of Tie2 Inhibits Retinal Neovascularization in the Mouse

, , , , , , & show all
Pages 249-257 | Received 12 Mar 2003, Accepted 23 Sep 2004, Published online: 02 Jul 2009
 

Abstract

Purpose: The purpose of this study was to develop pharmacological therapeutic alternatives for ischemia-induced proliferative retinopathy. Methods: C57BL/6J mice were placed in 76% oxygen on postnatal day 7 (P7) for 5 days. On P12 recombinant, chimeric vascular endothelial growth factor (sVEGF-R2) or sTie2 was injected intravitreally in one eye. The fellow eye received a control injection. On P17, retinal wholemounts were prepared after perfusion with fluorescein-dextran to quantify the retinopathy. Results: A single intravitreal injection of sVEGF-R2 reduced pathologic vascular changes significantly (p = 0.02). No significant effect was observed after intravitreal application of sTie2 (p = 0.07), although Ang-2 was upregulated in control animals without treatment as neovascularization developed and Ang-1 was constantly transcribed (ratio PCR). Conclusions: sVEGF-R2 interferes with VEGF signaling via VEGF-R2 receptor. Thus, local application of soluble receptors for angiogenic factors is a possible therapy for proliferative retinopathy. Receptors with a wide range of ligands might prove more useful for local application than those binding few or antagonistic ligands.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 555.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.