118
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Multifocal Visual Evoked Potentials in the Anesthetized Non-human Primate

, , , , , & show all
Pages 885-893 | Received 30 Jan 2005, Accepted 03 Jul 2006, Published online: 02 Jul 2009
 

Abstract

Purpose: To evaluate monkey multifocal visual evoked cortical potentials (mfVEPs) recorded from central and peripheral fields for reliability and isolation from electroretinographic (ERG) activity. Methods: The mfVEP stimulus consisted of a 7-element hexagonal array that subtended 80 degrees of the central visual field. Recordings were made under intravenous pentobarbital sodium (15 mg/kg) anesthesia. Two monkeys with absent optic nerve and ganglion cell function after combined unilateral optic nerve transection and experimental ocular hypertension (ONT/OHT) were followed longitudinally. In a second study, 16 ophthalmologically normal monkeys were tested once. Results: Testing of the non-transected eye in two transected animals revealed robust first- and second-order kernel, first slice (K1 and K2.1) mfVEPs. Stimulation of the transected eye revealed no contamination of the mfVEP from the concurrently recorded multifocal ERGs. There was complete separation of the root-mean-square (RMS) mfVEP amplitudes from the transected and the fellow eyes tested repeatedly across a 4- to 17- month period. The largest amplitude mfVEP was generated by the central element; however, mfVEPs were recorded from outside the central 20 degrees element. The 16 normal animals showed waveforms similar to the normal eyes of the ONT/OHT animals both in shape and distribution throughout the visual field. A scalar-product measure showed both K1 and K2.1 mfVEPs from central and some peripheral elements were statistically distinct from noise. Conclusions: mfVEPs can be reliably recorded from non-human primates anesthetized with pentobarbital. Under the recording conditions described, mfVEPs are not contaminated by ERG activity. mfVEPs may be useful in animal models of diseases that differentially affect macular and peripheral visual field responsiveness.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 555.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.