228
Views
10
CrossRef citations to date
0
Altmetric
Extra Ocular Structures

The Effect of Solithromycin, a Cationic Amphiphilic Drug, on the Proliferation and Differentiation of Human Meibomian Gland Epithelial Cells

, , &
Pages 683-688 | Received 08 Aug 2017, Accepted 12 Dec 2017, Published online: 28 Dec 2017
 

ABSTRACT

Purpose: We previously discovered that azithromycin (AZM) acts directly on immortalized human meibomian gland epithelial cells (IHMGECs) to stimulate their lipid and lysosome accumulation and overall differentiation. We hypothesize that this phospholipidosis-like effect is due to AZM’s cationic amphiphilic drug (CAD) nature. If our hypothesis is correct, then other CADs (e.g., solithromycin [SOL]) should be able to duplicate AZM’s action on IHMGECs. Our purpose was to test this hypothesis.

Materials and Methods: IHMGECs were cultured in the presence of vehicle or SOL (2, 10, or 20 µg/ml) for up to 7 days under proliferating or differentiating conditions. Positive (epidermal growth factor and bovine pituitary extract for proliferation; AZM for differentiation) and negative (vehicle) controls were included with the experiments. IHMGECs were evaluated for cell number, neutral lipid content, and lysosome accumulation.

Results: Our results demonstrate that SOL induces a rapid and dose-dependent increase in the accumulation of neutral lipids and lysosomes in HMGECs. The lysosomal effects were most prominent with the 10 and 20 µg/ml doses, and occurred earlier (i.e., 1 day) with SOL than with the AZM (10 µg/ml) control. The effects of SOL and AZM on IHMGEC differentiation were essentially the same after 3 days of culture. SOL did not influence the proliferation of HMGECs during a 7-day time period.

Conclusions: Our results support our hypothesis that SOL, a CAD, is able to reproduce AZM’s impact on lysosome and lipid accumulation, as well as the differentiation, of HMGECs. The effect of SOL on lysosome appearance was faster than that of AZM.

Declaration of interests

This study was sponsored by Cempra Pharmaceuticals.

Additional information

Funding

This research was sponsored by Cempra Pharmaceuticals and supported by the Margaret S. Sinon Scholar in Ocular Surface Research Fund and the Guoxing Yao Research Fund.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 555.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.