203
Views
2
CrossRef citations to date
0
Altmetric
Extraocular Structures

TBL1XR1 Mutations in Primary Marginal Zone Lymphomas of Ocular Adnexa are Associated with Unique Morphometric Phenotypes

, , , , &
Pages 1583-1589 | Received 18 Mar 2020, Accepted 21 Apr 2020, Published online: 19 Jun 2020
 

ABSTRACT

Purpose

Extranodal marginal zone B-cell lymphoma (EMZL) of mucosa-associated lymphoid tissue (MALT) that affects the ocular adnexa, also known as ocular adnexal MALT lymphomas (OAML), are low-grade lymphomas that mostly affect elderly individuals. This study was conducted to explore the genetic and microbial drivers of OMAL, and unique morphometric phenotypes associated with these mutations and infections.

Materials and Methods

In this study, we performed targeted deep sequencing of 8 OAML cases to identify its potential genetic and microbial drivers. We additionally performed computational digital image analysis of cases to determine if morphologic features corresponded to genetic mutations and disease biology.

Results

We identified TBL1XR1 as recurrently mutated in OAML (4/8), and mutations in several other oncogenes, tumor suppressors, transcription regulators, and chromatin remodeling genes. Morphologically, OAML cases with mutations in TBL1XR1 showed lymphoma cells with significantly lower circularity and solidity by computational digital image analysis (p-value <0.0001). Additionally, cases of OAML with mutations in TBL1XR1 showed equivalent or increased vascular density compared to cases without mutations in TBL1XR1. Finally, we did not find any infectious microbial organisms associated with OAML.

Conclusions

Our study showed recurrent mutations in TBL1XR1 are associated with unique morphometric phenotypes in OMAL cases. Additionally, mutations in genes associated with the methylation status of histone 3, nuclear factor (NF)-κB pathway, and NOTCH pathway were enriched in OMAL cases. Our findings have biologic and clinical implications as mutations in TBL1XR1 and other genes have the potential to be used as markers for the diagnosis of OAML, and also demonstrate a specific biologic phenotypic manifestation of TBL1XR1 mutations.

Authorship

DJ wrote the manuscript, analyzed data, and performed experiments. KS, AB, and PS edited the manuscript, analyzed data, and performed experiments. EDP designed research and edited the manuscript. RSO conceived of and designed the study, wrote the manuscript, and analyzed data.

Supplementary Material

Supplemental data for this article can be accessed here.

Statement of Ethics

This study was approved by Stanford University’s Institutional Review Board.

Additional information

Funding

This work was funded through grant funding from Agilent Technologies.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 555.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.