121
Views
1
CrossRef citations to date
0
Altmetric
Lens

Implementation of the Frequency Scatter Index in Clinical Commercially Available Double-pass Systems

ORCID Icon, , , , &
Pages 391-398 | Received 15 Jul 2021, Accepted 27 Oct 2021, Published online: 18 Nov 2021
 

ABSTRACT

A previous work has reported a methodology to quantify intraocular scattering using a high sensitivity double-pass instrument with a robust index, the frequency scatter index. The purpose of our study was to evaluate an adaptation of the frequency scatter index for use in clinical double-pass systems. A prospective observational study was carried out in a group of patients with nuclear cataracts (n = 52) and in a control group (n = 11) using conventional double-pass systems. The frequency scatter index and the objective scatter index were used to assess the scattering. The Spearman coefficient was calculated to assess the correlation between both indexes, obtained from the double-pass images. Simultaneous measurements were performed with a double-pass and with a Hartmann-Shack wavefront sensor in the control group. The root-mean-square wavefront error and the full width at half maximum of the double-pass image were used to quantify the residual aberrations introduced by the variations in pupil size and retinal eccentricity. Measurement in eyes with different grades of cataracts shows a strong correlation (ρ = 0.929, p < .0001) between the frequency scatter index and the objective scatter index. A certain degree of correlation was observed between the objective scatter index and the root-mean-square and between the objective scatter index and the full width at half maximum, both for measurements with a different pupillary diameter and with a different retinal eccentricity (p < .05). No relationship was observed between the frequency scatter index and the root-mean-square or between the frequency scatter index and the full width at half maximum (p > .05). We have introduced and evaluated an adaptation of a methodology proposed recently for the measurement of intraocular scattering using the double-pass technique with a robust index, which is less affected by ocular aberrations. The frequency scatter index can be applied to conventional double-pass instruments available in clinical environments.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Additional information

Funding

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) under Grant number [PUE 0114]; Consejo de Investigaciones de la Universidad Nacional de Tucumán (CIUNT) under Grant number [PIUNT E646]; and Spanish Ministry of Science and Innovation (MICINN) under Grant number [DPI2017-89414-R].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 555.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.