232
Views
2
CrossRef citations to date
0
Altmetric
Review

Uncontrolled Oxygen Levels in Cultures of Retinal Pigment Epithelium: Have We Missed the Obvious?

ORCID Icon
Pages 651-660 | Received 09 Jan 2022, Accepted 28 Feb 2022, Published online: 25 Apr 2022
 

Abstract

Retinal pigment epithelium (RPE) is the outermost layer of retina located between the photoreceptor cells and the choroid. This highly-polarized monolayer provides critical support for the functioning of the other parts of the retina, especially photoreceptors. Methods of culturing RPE have been under development since its establishment in 1920s. Despite considering various factors, oxygen (O2) levels in RPE microenvironments during culture preparation and experimental procedure have been overlooked. O2 is a crucial parameter in the cultures, and therefore, maintaining RPE cells at O2 levels different from their native environment (70–90 mm Hg of O2) could have unintended consequences. Owing to the importance of the topic, lack of sufficient discussion in the literature and to encourage future research, this paper will focus on uncontrolled O2 levels in cultures of RPE cells.

Acknowledgments

The author thanks Kristin Skårdal for her assistance in drawing the illustrations.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 555.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.