15
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Lycium barbarum-Derived Polysaccharides Alleviate DNA Damage and Oxidative Stress Caused by Ultraviolet Radiation in Corneal Epithelial Cells

, , , , &
Received 29 Jan 2024, Accepted 06 Jun 2024, Published online: 19 Jun 2024
 

Abstract

Purpose

Lycium barbarum polysaccharides (LBPs) have been proven to protect the eyes by inhibiting apoptosis. This study was designed to investigate the effect of LBPs on DNA damage and oxidative stress induced by ultraviolet B (UVB) radiation in human corneal epithelial cells (HCECs).

Methods

HCECs were divided into a control group, UVB group and UVB + LBP group and treated with varying concentrations of LBP (0, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6 and 3.2 mg/mL). Then, the effects of LBP on the viability and apoptosis of HCECs were detected via MTT assay and flow cytometry. Additionally, the contents of superoxide dismutase (SOD), malondialdehyde (MDA), and reactive oxygen species (ROS) in the cells of each group were measured to evaluate the level of oxidative stress.

Results

LBP at a concentration of 0.4 mg/mL showed the best effect on promoting the viability and inhibiting the apoptosis of HCECs. Compared with the control group, the UVB and UVB + LBP groups exhibited significantly decreased levels of cell viability and SOD and notably increased apoptosis, MDA, ROS, tail DNA percentage, olive tail moment, p-CHK2, and gamma histone (γH2AX). In contrast to the UVB group, the UVB + LBP group presented notably upregulated levels of cell viability and SOD and downregulated apoptosis, MDA, ROS, tail DNA percentage, olive tail moment, p-CHK2, and γH2AX.

Conclusions

The optimal concentration of LBP to promote the viability and reduce the apoptosis of HCECs is 0.4 mg/mL. Moreover, LBP can alleviate DNA damage and oxidative stress induced by UVB in HCECs.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The datasets generated for this study are available on request to the corresponding author.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 555.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.