25
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Directly Connected Hybrid Finite Element–Boundary Integral–Ray-Optical Models

&
Pages 41-50 | Received 26 Aug 2008, Accepted 24 Aug 2009, Published online: 08 Mar 2010
 

Abstract

The hybrid finite element–boundary integral–uniform geometrical theory of diffraction method with acceleration by the multi-level fast multi-pole method is extended in a way that allows the application of the hybrid method to problems, where the finite element–boundary integral–multi-level fast multi-pole method parts of the model can be directly connected to uniform geometrical theory of diffraction regions. This becomes possible by an appropriate utilization of Huygens' principle, together with the fact that the regions exterior to the introduced Huygens surface is free of any fields and can thus be filled with arbitrary materials. As such, the appropriate materials are chosen in order to obtain simple enough bodies, which can be treated by the uniform geometrical theory of diffraction. Since some of the boundary integral basis functions typically touch flat parts of these bodies, the image principle is employed for the accurate evaluation of the corresponding boundary integrals. Numerical results for radiation and scattering problems are presented and compared to reference numerical data. The obtained results prove the feasibility of the procedure and considerable computation time and memory savings.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 396.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.